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Abstract— In this paper, we consider a (3+1)-dimensional nonlinear evolution equation to determine its periodic lump waves. To do that, 

we cast the equation into its Hirota bilinear form firstly. We offer periodic lump wave through a test function in-terms of exponential and 

periodic cosine functions. Finally, the interactions of solitary waves and lump waves are presented with an entire analytic derivation. Some 

grapgs are incorporated to visualize the dynamics of the obtain wave solutions. 
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——————————      —————————— 

1 INTRODUCTION                                                                     

Nonlinear evolution equations have a lot of significant appli-
cations in different sides of mathematical physics and engi-
neering. Generally, all the basic equations of physics are non-
linear and such types of nonlinear evolution equations 
(NLEEs) are often very difficult to get exact solution [1-29]. So, 
the powerful and effective methods to seek exact solutions of 
NLEEs still have very attraction to diverse group of research-
er. The Darboux transformation [1], the tanh-function method 
[2], the extended tanh-function method [3], the homogeneous 
balance method [4], the Jacobi elliptic function expansion 
method [5], the F-expansion method [6], Hirota bilinear meth-
od [13, 18] and so on which many powerful and systematic 
approaches to obtain the exact solutions of NLEEs. Among 
those methods, the Hirota's bilinear method is rather heuristic 
and possesses significant features that make it practical for the 
determination of multiple soliton solutions, and for multiple 
singular soliton solutions [13] for an extensive class of NLEEs 
in a direct method.  
Recently, we have seen two types of phenomena such as soli-

ton fission and soliton fusion respectively [13] in many non-

linear science and engineering field such as the gas dynamics, 

laser, plasma physics, electromagnetic, and passive random 

walker dynamics [14]-[16]. Also, rogue wave solutions have 

drawn a big attention of mathematicians and physicists glob-

ally for amusing class of lump-type solutions. Such types of 

phenomena are found in different fields in physics such as 

plasmas, the deep ocean, nonlinear optic and even finance 

[17]-[19]. On the basis of Hirota bilinear forms, it is natural 

and interesting to hunt for rogue type solutions of NLEEs [21]-

[22]. 
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The nonlinear conformable time-fractional PHI-four equations 

have been solved through the generalized Kudryshov method 

with conformable fractional derivative [23]. The new different 

varieties of soliton structures of the unstable nonlinear 

Schrodinger equations through the generalized Kudryshov 

method [24]. 

In this paper, we consider a (3+1)-dimensional nonlinear evo-

lution equation to determine periodic lump waves. That’s why 

we cast the equation into Hirota bilinear form firstly. Then we 

offer periodic lump wave through a test function in-terms of 

exponential and periodic cosine functions. Finally, the interac-

tions of solitary waves and lump waves are presented with an 

entire analytic derivation. Some graphs are incorporated to 

visualize the dynamics of the obtain wave solutions. 

2 LUMP AND SOLITARY WAVE SOLUTIONS TO THE 

BREAKING SOLITON EQUATION 

2.1 The bilinear form of (3+1)D nonlinear evolution 
equation 

 
Consider the (3+1)-dimensional nonlinear evolution equation 
as 

       033)(3  zzxxxyxxxxyyt uuuuuu .            (1)                                                         

Through the dependent variable transformation as 

        xfu )(ln2 ,                                                                      (2)                                                                                                 

Eq.(1) can be reduce to bilinear D operator form. 

Substitute the equation (2) with ),,,( tzyxff   into equa-

tion (1) we obtain 

         0.)33( 223  ffDDDDDD zxyxyt               (3) 

Where, yt DD , yxDD3
, 

2
xD  and 

2
zD  are all the bilinear 

derivative operators [20] defined by     
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Using formula Eq.(4), Eq.(3)reduces to  

033  xyxxxxyxyxxxxxxy ffffffff .                    (5)                                                             

                                                                

2.2 Lump wave solutions  

Let us adopt that Eq. (5) has a ansatz in the following form: 

 )cos( 43211 tazayaxalf
     

              
 )exp( 8765 tazayaxa                                                              

 

                 )(exp{ 87652 tazayaxal                      (6) 

where, ,ia  81  i
 

are arbitrary constants to be deter-

mined later. Setting Eq. (6) into bilinear form Eq. (5), we obtain 

some polynomials which are functions of the variables 

zyx ,, and t . Equating all the coefficient of sincos, and 

exp to be zero, we can obtain the set of algebraic equations 

for ,ia  81  i  . Solving the system with the aid of sym-

bolic computation system Maple, gives the following relations 

between the parameters ia :  
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  and  

832 ,, aaa are arbitrary constants. 

Therefore, substituting Eq. (7) and Eq. (6) along with Eq.(2) 

yields the following periodic lump wave solution, 
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Fig.1 shows the sketch of lump waves occurs periodically for 

the values ,22 a 1,1 2183  llaa , (a) gives 3D 

views from which one can reveal the  lump wave or one di-

mensional rogue wave feathers in the xt plane at 

0 zy .  

 
(a) 

 

 
(b) 

Figure-1: Lump wave solution (8) for Eq. (1) by choosing suitable parame-

ters; (a) ,22 a 1,1 2183  llaa ,  Perspective view of 

the wave at .0 zy
 
(b)

 
,22 a 1,1 2183  llaa , 

Corresponding contour plot of the wave.  

It is also clear that the Fig.1 of Eq. (8) is the familiar eye-

shaped lump wave solution which has a local deep whole and 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020                                                                                                       1495 

ISSN 2229-5518  

IJSER © 2020 

http://www.ijser.org  

a height peak (clears from the views (b)) in each lump wave. 

Besides this, we discover that lump wave has the uppermost 

peak in its surrounding waves. The figures in the other plane 

exhibits similar characteristics but periodicity of lump may 

differ.    

Set-2: 
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  and 

832 ,, aaa are arbitrary constants. 

Therefore, substituting Eq. (9) and Eq. (6) along with Eq.(2) 

yields the following periodic lump wave solution, 
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  and 

832 ,, aaa are arbitrary constants. 

Fig.2 shows the sketch of lump waves occurs periodically for 

the values ,22 a 1,1 2183  llaa , (a) gives 3D 

views from which one can reveal the  lump wave or one di-

mensional rogue wave feathers in the xt plane at 

0 zy . It is also clear that the Fig.2 of Eq. (10) is the fa-

miliar eye-shaped lump wave solution which has a local deep 

whole and a height peak (clears from the views (b)) in each 

lump wave. Besides this, we discover that lump wave has the 

uppermost peak in its surrounding waves. The figures in the 

other plane exhibits similar characteristics but periodicity of 

lump may differ (see Fig-2(c) and (d) in the xy plane).   

 
(a) 

 
(b) 

 
(c) 
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(d) 

 

Figure-2: Lump wave solution (10) for Eq. (1) by choosing suitable param-

eters:
 

,22 a 1,1 2183  llaa .(a) Perspective view of 

the wave at .0 zy (b) Corresponding contour plot of the wave.  

4 CONCLUSION 

In concluding remarks, based on the Hirota bilinear process, 

we have fruitfully offered two collision phenomena between a 

solitary type lump wave and a periodic cosine function solution 

to the (3+1)-dimensional nonlinear evolution equation equation. 

The lump wave comes in term of two exponentials and periodici-

ty comes in term of cosine function and after collision the inter-

action exhibits as periodic breather type periodic lump waves. 

Also the results have been depicted graphically via 3D plot, con-

tour plots to realize the real dynamics of the interactive waves. 

These outcomes will serve as a very significant milestone in the 

study of water waves in mathematical physics and engineering 

phenomena. 
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